Powered by Blogger.
RSS

GELOMBANG RADIO

Gelombang radio

Frekuensi gelombang radio untuk pengiriman suara
Gelombang radio bisa ditransmisikan melalui metode AM dan FM.
Gelombang radio adalah satu bentuk dari radiasi elektromagnetik, dan terbentuk ketika objek bermuatan listrik dari gelombang osilator (gelombang pembawa) dimodulasi dengan gelombang audio (ditumpangkan frekuensinya) pada frekuensi yang terdapat dalam frekuensi gelombang radio (RF; "radio frequency")) pada suatu spektrum elektromagnetik, dan radiasi elektromagnetiknya bergerak dengan cara osilasi elektrik maupun magnetik.
Gelombang elektromagnetik lain yang memiliki frekuensi di atas gelombang radio meliputi sinar gamma, sinar-X, inframerah, ultraviolet, dan cahaya terlihat.
Ketika gelombang radio dikirim melalui kabel kemudian dipancarkan oleh antena, osilasi dari medan listrik dan magnetik tersebut dinyatakan dalam bentuk arus bolak-balik dan voltase di dalam kabel. Dari pancaran gelombang radio ini kemudian dapat diubah oleh radio penerima (pesawat radio) menjadi signal audio atau lainnya yang membawa siaran dan informasi.
Undang-undang Nomor 32 Tahun 2002 Tentang Penyiaran menyebutkan bahwa frekuensi radio merupakan gelombang elektromagnetik yang diperuntukkan bagi penyiaran dan merambat di udara serta ruang angkasa tanpa sarana penghantar buatan, merupakan ranah publik dan sumber daya alam terbatas. Seperti spektrum elektromagnetik yang lain, gelombang radio merambat dengan kecepatan 300.000 kilometer per detik. Perlu diperhatikan bahwa gelombang radio berbeda dengan gelombang audio.
Gelombang radio merambat pada frekuensi 100,000 Hz sampai 100,000,000,000 Hz, sementara gelombang audio merambat pada frekuensi 20 Hz sampai 20,000 Hz. Pada siaran radio, gelombang audio tidak ditransmisikan langsung melainkan ditumpangkan pada gelombang radio yang akan merambat melalui ruang angkasa. Ada dua metode transmisi gelombang audio, yaitu melalui modulasi amplitudo (AM) dan modulasi frekuensi (FM).
Meskipun kata 'radio' digunakan untuk hal-hal yang berkaitan dengan alat penerima gelombang suara, namun transmisi gelombangnya dipakai sebagai dasar gelombang pada televisi, radio, radar, dan telepon genggam pada umumnya.

Penemuan Gelombang Radio

Dasar teori dari perambatan gelombang elektromagnetik pertama kali dijelaskan pada 1873 oleh James Clerk Maxwell dalam papernya di Royal Society mengenai teori dinamika medan elektromagnetik (bahasa Inggris: A dynamical theory of the electromagnetic field), berdasarkan hasil kerja penelitiannya antara 1861 dan 1865.
Pada 1878 David E. Hughes adalah orang pertama yang mengirimkan dan menerima gelombang radio ketika dia menemukan bahwa keseimbangan induksinya menyebabkan gangguan ke telepon buatannya. Dia mendemonstrasikan penemuannya kepada Royal Society pada 1880 tapi hanya dibilang itu cuma merupakan induksi.
Adalah Heinrich Rudolf Hertz yang, antara 1886 dan 1888, pertama kali membuktikan teori Maxwell melalui eksperimen, memperagakan bahwa radiasi radio memiliki seluruh properti gelombang (sekarang disebut gelombang Hertzian), dan menemukan bahwa persamaan elektromagnetik dapat diformulasikan ke persamaan turunan partial disebut persamaan gelombang.

Penggunaan radio

Sebuah radio merek Bush lama
Banyak penggunaan awal radio adalah maritim, untuk mengirimkan pesan telegraf menggunakan kode Morse antara kapal dan darat. Salah satu pengguna awal termasuk Angkatan Laut Jepang memata-matai armada Rusia pada saat Perang Tsushima di 1901. Salah satu penggunaan yang paling dikenang adalah pada saat tenggelamnya RMS Titanic pada 1912, termasuk komunikasi antara operator di kapal yang tenggelam dan kapal terdekat, dan komunikasi ke stasiun darat mendaftar yang terselamatkan.
Radio digunakan untuk menyalurkan perintah dan komunikasi antara Angkatan Darat dan Angkatan Laut di kedua pihak pada Perang Dunia II; Jerman menggunakan komunikasi radio untuk pesan diplomatik ketika kabel bawah lautnya dipotong oleh Britania. Amerika Serikat menyampaikan Empat belas Pokok Presiden Woodrow Wilson kepada Jerman melalui radio ketika perang.
Siaran mulai dapat dilakukan pada 1920-an, dengan populernya pesawat radio, terutama di Eropa dan Amerika Serikat. Selain siaran, siaran titik-ke-titik, termasuk telepon dan siaran ulang program radio, menjadi populer pada 1920-an dan 1930-an.
Penggunaan radio dalam masa sebelum perang adalah pengembangan pendeteksian dan pelokasian pesawat dan kapal dengan penggunaan radar].
Sekarang ini, radio banyak bentuknya, termasuk jaringan tanpa kabel, komunikasi bergerak di segala jenis, dan juga penyiaran radio. Baca sejarah radio untuk informasi lebih lanjut.
Sebelum televisi terkenal, siaran radio komersial termasuk drama, komedi, beragam show, dan banyak hiburan lainnya; tidak hanya berita dan musik saja. Lihat pemrograman radio.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

PENGERTIAN GELOMBANG ELEKTROMAGNETIK

 

Pengertian Gelombang Elektromagnetik


<p>Your browser does not support iframes.</p>
(Pengertian Gelombang Elektromagnetik) – Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.
Dasar teori dari perambatan gelombang elektromagnetik pertama kali dijelaskan pada 1873 oleh James Clerk Maxwell dalam papernya di Royal Society mengenai teori dinamika medan elektromagnetik (bahasa Inggris: A dynamical theory of the electromagnetic field), berdasarkan hasil kerja penelitiannya antara 1861 dan 1865.
Pada 1878 David E. Hughes adalah orang pertama yang mengirimkan dan menerima gelombang radio ketika dia menemukan bahwa keseimbangan induksinya menyebabkan gangguan ke telepon buatannya. Dia mendemonstrasikan penemuannya kepada Royal Society pada 1880 tapi hanya dibilang itu cuma merupakan induksi.
Adalah Heinrich Rudolf Hertz yang, antara 1886 dan 1888, pertama kali membuktikan teori Maxwell melalui eksperimen, memperagakan bahwa radiasi radio memiliki seluruh properti gelombang (sekarang disebut gelombang Hertzian), dan menemukan bahwa persamaan elektromagnetik dapat diformulasikan ke persamaan turunan partial disebut persamaan gelombang.
Gelombang elektromagnetik ditemukan oleh Heinrich Hertz.
Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hν, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 ?34 J·s — dan ? adalah frekuensi gelombang.
Einstein kemudian memperbarui rumus ini menjadi Ephoton = h1½.
Electromagnetic Research Maxwell Review
Sekitar abad ke 19, Maxwell menyatakan persamaan nya yang cukup mengejutkan dunia Fisika. Salah satunya menyatakan adanya gelombang elektromagnetik. Namun, saat itu belum dapat dibuktikan. Karna itu, Heinrich Hertz mencoba untuk membuktikan keberadaan gelombang elektromagnetik itu.
Secara teori, Hertz menyadari bahwa gelombang elektromagnetik yang dinyatakan Maxwell merupakan gabungan dari gelombang listrik dan gelombang magnetik secara saling tegak lurus. Begitu pula dengan arah geraknya. Karena gelombang tersebut mengantung gelombang listrik, maka Hertz mencoba membuktikan keberadaan gelombang elektromagnetik tersebut melalui keberadaan gelombang listriknya yang diradiasikan oleh rangkaian pemancar.
Hertz mencoba membuat rangkaian pemancar sederhana dengan bantuan trafo untuk memperkuat tegangan dan kapasitor sebagai penampung muatannya. Karena ada arus pergeseran pada gap pemancar, diharapkan ada radiasi gelombang elektromagnetik yang akan dipancarkan. Karena secara teori, dari percikan yang muncul akan dihasilkan gelombang elektromagnetik. Alhasil, pada rangkaian loop penerima yang hanya berupa kawat berbentuk lingkaran yang tanpa diberikan sumber tegangan apapun, ternyata muncul percikan listrik pada gap-nya. Ini membuktikan ada listrik yang mengalir melalui radiasi suatu benda.yang akhirnya terhantarkan ke loop. Karena merasa belum puas, Hertz mencoba untuk menghitung frekuensi pada loop.
Ternyata frekuensi yang dihasilkan sama dengan frekuensi pemancar. Ini artinya listrik pada loop berasal dari pemancar itu sendiri. Dengan ini terbuktilah adanya radiasi gelombang elektromagnetik Maxwell. Percobaan Hertz ini juga memicu penemuan telegram tanpa kabel dan radio oleh Marconi. Rangkaian ini ada dalam kaca quartz untuk menghindari sinar UV.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

cara kerja televisi

CARA KERJA TELEVISI

Bagaimanakah Televisi Bekerja?
Sebelum kita mengetahui prinsip kerja pesawat televisi, ada baiknya kita mengetahui sedikit tentang perjalanan objek gambar yang biasa kita lihat di layar kaca. Gambar yang kita lihat di layar televisi adalah hasil produksi dari sebuah kamera.
Photobucket
Objek gambar yang di tangkap lensa kamera akan dipisahkan berdasarkan tiga warna dasar, yaitu merah (R = red), hijau (B = blue). Hasil tersebut akan dipancarkan oleh pemancar televisi (transmiter). Pada sestem pemancar televisi, informasi visual yang kita lihat pada layar kaca pada awalnya di ubah dari objek gambar menjadi sinyal listrik. Sinyal listrik tersebut akan ditransmisikan oleh pemancar ke pesawat penerima (receiver) televisi.
PRINSIP KERJA TELEVISI
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi.
Selain gambar, juga membawa suara ?
Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi.Modulasi adalah sinyal bidang frekuensi dasar (base band).
Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75khz melainkan 25 khz.
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
1. VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
2. VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
3. UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
JENIS-JENIS SISTEM TELEVISI
Sistem pemancar televisi yang kita kenal di antaranya:
1. NTSC (National Television System Committee)
2. PAL (Phases Alternating Line)
3. SECAM (Sequential Couleur a Memorie)
4. PALB
NTSC (National Television System Committee) digunakan di Amerika Serikat, sistem PAL (Phases Alternating Line) di gunakan di Inggris, sistem SECAM (Sequential Couleur a Memorie) digunakan di Perancis. Sementara itu, Indonesia sendiri menggunakan sistem PALB. Hal yang membedakan sistem tersebut adalah format gambar, jarak frekuensi pembawa dan pembawa suara.
Sistem Televisi Dasar di Dunia
Photobucket
BAGIAN-BAGIAN TELEVISI
Rangkaian Catu Daya (Power Supply)
Rangkaian berfungsi untuk mengubah arus AC menjadi DC yang selanjutnya didistribusikan ke seluruh rangkaian. Rangkaian catu daya dibatasi oleh garis putih pada PCB dan daerah di dalam kotak merah. Daerah di dalam garis putih adalah rangkaian input yang merupakan daerah tegangan tinggi (live area). Sementara itu, daerah di dalam kotak merah adalah output catu daya yang selanjutnya mendistribusikan tegangan DC ke seluruh rangkaian TV.
Photobucket
Rangkaian Penala (tuner)
Rangkaian ini terdiri dari penguat frekuensi tinggi ( penguat HF ), pencampur (mixer), dan osilator lokal.Rangkaian penala berfungsi untuk menerima sinyal masuk (gelombang TV) dari antena dan mengubahnya menjadi sinyal frekuensi IF.
Photobucket
Rangkaian penguat IF (Intermediate Frequency)
Rangkaian ini berfungsi sebagai penguat sinyal hingga 1.000 kali. Sinyal output yang dihasilkan penala ( tuner) merupakan sinyal yang lemah dan yang sangat tergantung pada pada sinyal pemancar, posisi penerima, dan bentang bentang alam. Rangkaian ini juga berguna untuk membuang gelombang lain yang tidak dibutuhkan dan meredam interferensi pelayanan gelombang pembawa suara yang mengganggu gambar.
Photobucket
Rangkaian Detektor Video
Rangkaian ini berfungsi sebagai pendeteksi sinyal video komposit yang keluar dari penguat IF gambar. Selain itu, rangkaian ini berfungsi pula sebagai peredam seluruh sinyal yang mengganggu karena apabila ada sinyal lain yang masuk akan mengakibatkan buruknya kualitas gambar. Salah satu sinyal yang di redam adalah sinyal suara.
Rangkaian Penguat Video
Rangkaian ini berfungsi sebagai penguat sinyal luminan yang berasal dari deteltor video sehingga dapat menjalankan layar kaca atau CRT (catode ray tube). Didalam rangkaian penguat video terdapat pula rangkaian ABL(automatic brightness level) atau pengatur kuat cahaya otomatis yang berfungsi untuk melindungi rangkaian tegangan tinggi dari tegangan muatan lebih yang disebabkan oleh kuat cahaya pada layar kaca.
Rangkaian AGC (Automatic Gain Control)
Rangkaian AGC berfungsi untuk mengatur penguatan input secara otomatis. Rangkaian ini akan menstabilkan sendiri input sinyal televisi yang berubah-ubah sehingga output yang dihasilkan menjadi konstan.
Photobucket
Rangkaian Defleksi Sinkronisasi
Rangkaian ini terdiri dari empat blok, yaitu rangkaian sinkronisasi, rangkaian defleksi vertikal, rangkaian defleksi horizontal, dan rangkaian pembangkit tegangan tinggi.
Photobucket
Rangkaian Audio
Suara yang kita dengar adalah hasil kerja dari rangkaian ini, sinyal pembawa IF suara akan dideteksi oleh modulator frekuensi (FM). Sebelumnya, sinyal ini dipisahkan dari sinyal pembawa gambar.
Photobucket
JENIS-JENIS LAYAR TELEVISI
Tipe Layar Televisi CRT (catode ray tube)
Pada televisi jenis ini layar terlihat lebih cembung ketimbang jenis lainnya. Teknologi televisi dengan tabung CRT tergolong paling tua dan hingga saat ini terus digunakan dan dikembangkan. Walaupun telah muncul teknologi yang baru. Tabung CRT hanya berisi sebuah tabung sinar katoda (cathode-ray tube) sedang untuk perbandingannya, plasma terdiri dari satu juta tabung fluorescent berukuran sangat kecil.
Photobucket
Tipe Layar Televisi Plasma
Dalam prinsipnya, layar plasma tersusun atas dua lembar kaca. Di antara keduanya diisi ribuan sel, yang ratusan di antaranya berisi gas xenon dan neon. Dua jenis elektroda panjang, address electrode dan transparent display electrode, direntangkan di antara lempengan kaca tersebut. Saat layar plasma dihidupkan, elektroda-elektroda yang saling berpotongan di atas sel itu diberi muatan listrik oleh komputer layar untuk mengionisasi gas dalam sel. Ini berlangsung ribuan kali dalam sepersekian detik. Arus listrik pun melewati gas di dalam sel dan menghasilkan aliran partikel bermuatan listrik yang cepat, yang merangsang atom gas tersebut melepaskan foton ultraviolet.
Photobucket
Foton ultraviolet berinteraksi dengan fosfor
Kemudian, foton ultraviolet berinteraksi dengan fosfor yang akhirnya melepaskan energi di dalam bentuk sinar foton yang jelas. Setiap pixel tersusun atas tiga sel sub pixel yang terpisah, masing-masing dengan fosfor yang berbeda warna, yaitu; merah, hijau, biru yang akan bercampur menghasilkan warna pixel.
Untuk menyeragamkan kekuatan arus listrik yang mengalir melalui sel berbeda, sistem kontrolnya akan menambah atau mengurangi intensitas warna setiap sub pixel. Hal ini untuk menghasilkan ratusan kombinasi merah, hijau, dan biru yang berbeda. Dengan cara ini, sistem kontrol dapat menghasilkan warna dalam spektrum luas, sekira ada 16,77 juta warna bisa dihasilkan sebuah layar plasma. Inilah yang membuat tampilan gambar plasma sangat tajam dan jelas.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

pengertian dan fungsi multimeter

Pengertian Dan Fungsi Multimeter


Multimeter adalah alat ukur yang dipakai untuk mengukur tegangan listrik, arus listrik, dan tahanan (resistansi). Itu adalah pengertian multimeter secara umum, sedangkan pada perkembangannya multimeter masih bisa digunakan untuk beberapa fungsi seperti mengukur temperatur, induktansi, frekuensi, dan sebagainya. Ada juga orang yang menyebut multimeter dengan sebutan AVO meter, mungkin maksudnya A (ampere), V(volt), dan O(ohm).

Bahagian Multimeter Analog & Fungsinya



Dari gambar multimeter dapat dijelaskan bagian-bagian dan
fungsinya :
(1) Sekrup pengatur kedudukan jarum penunjuk (Zero
Adjust Screw), berfungsi untuk mengatur kedudukan
jarum penunjuk dengan cara memutar sekrupnya ke
kanan atau ke kiri dengan menggunakan obeng pipih
kecil.
(2) Tombol pengatur jarum penunjuk pada kedudukan zero
(Zero Ohm Adjust Knob), berfungsi untuk mengatur
jarum penunjuk pada posisi nol. Caranya : saklar
(Ohm), test lead + (merah Wpemilih diputar pada posisi
dihubungkan ke test lead – (hitam), kemudian tombol
diputar ke kiri atau ke kanan Wpengatur kedudukan 0
.Wsehingga menunjuk pada kedudukan 0
(3) Saklar pemilih (Range Selector Switch), berfungsi untuk
memilih posisi pengukuran dan batas ukurannya.
Multimeter biasanya terdiri dari empat posisi
pengukuran, yaitu :
(Ohm) berarti multimeter berfungsi sebagai W(4) Posisi
ohmmeter, yang terdiri dari tiga batas ukur : x 1; x 10;
Wdan K
(5) Posisi ACV (Volt AC) berarti multimeter berfungsi
sebagai voltmeter AC yang terdiri dari lima batas ukur :
10; 50; 250; 500; dan 1000.
(6) Posisi DCV (Volt DC) berarti multimeter berfungsi
sebagai voltmeter DC yang terdiri dari lima batas ukur :
10; 50; 250; 500; dan 1000.
(7) Posisi DCmA (miliampere DC) berarti multimeter
berfungsi sebagai mili amperemeter DC yang terdiri dari
tiga batas ukur : 0,25; 25; dan 500.
(8) Tetapi ke empat batas ukur di atas untuk tipe
multimeter yang satu dengan yang lain batas ukurannya
belum tentu sama.
Terminal), berfungsi sebagai W(9) Lubang kutub + (V A
tempat masuknya test lead kutub + yang berwarna
merah.
(10) Lubang kutub – (Common Terminal), berfungsi
sebagai tempat masuknya test lead kutub – yang
berwarna hitam.
(11) Saklar pemilih polaritas (Polarity Selector Switch),
berfungsi untuk memilih polaritas DC atau AC.
(12) Kotak meter (Meter Cover), berfungsi sebagai tempat
komponen-komponen multimeter.
(13) Jarum penunjuk meter (Knife –edge Pointer), berfungsi
sebagai penunjuk besaran yang diukur.
(14) Skala (Scale), berfungsi sebagai skala pembacaan
meter.

Scaling

  • Analog multimeter tidak memiliki kemewahan skala otomatis. Untuk mengatur skala Anda menghidupkan saklar pemilih ke kisaran yang tepat untuk membaca.

Langkah


Memahami jangkauan.
Memahami jangkauan. Meter memiliki kisaran nol hingga skala penuh. Nol (yang ditampilkan di sini) selalu nol.

Ini menunjukkan meter pada skala penuh. Berapa banyak volt adalah bahwa?
Tentukan tegangan pada skala penuh. Hal ini tergantung pada pengaturan dari saklar jangkauan. Meter ini dirancang untuk memberikan skala penuh ketika tegangan Anda mengukur sesuai dengan pengaturan saklar. Jadi, jika saklar diatur ke kisaran 30 volt, gambar ini menunjukkan 30 volt diterapkan di input. Demikian pula, jika saklar diatur ke kisaran 0,1 amp, Anda memiliki 0,1 amp menjalankan arus melalui meter.

Setengah skala.
Ingat bahwa meter adalah linier. Jadi pada skala setengah (ditampilkan di sini), Anda hanya dapat membagi berbagai pengaturan dengan 2. Berikut ini adalah 150 volt pada kisaran 300V, 50mA atau pada kisaran 100mA.
Mengharapkan variasi dalam skala. Dalam contoh ini, ada dua skala, 0 ke 1 dan 0 sampai 3. Tidak semua meter adalah seperti ini. Beberapa 0 sampai 5, atau 0 sampai 2, tapi skala disediakan untuk mencocokkan setiap pengaturan dari saklar jangkauan. Hanya menemukan satu yang cocok switch, kemudian memindahkan titik desimal mental.

Contoh ini menunjukkan 7.
Contoh ini menunjukkan 7,2 volt pada kisaran 10V, 216mA atau pada kisaran 300mA.

Berikut ini 36.5mV pada kisaran 100mV, atau 11A pada kisaran 30A.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Cara Kerja Multimeter Analog dan Digital

MENGUKUR TEGANGAN AC DENGAN MULTIMETER (part3)
V. MENGUKUR TEGANGAN AC
Gunakan alas kaki kering terbuat dari bahan isolator sebagai pengaman minimal jika terjadi kejutan listrik. Ini perlu dilakukan bila dilakukan pengukuran tegangan AC yang dianggap besar. Sebelum melakukan pengukuran tegangan hendaknya kita sudah bisa memperkirakan berapa besar tegangan yang akan diukur, ini digunakan sebagai acuan menentukan Batas Ukur yang harus digunakan. Pemilihan batas ukur yang tepat hendaknya harus lebih tinggi dari tegangan yang diukur
contoh : untuk pengukuran tegangan PLN, diketahui jenis tegangan-nya adalah AC dan besar tegangan adalah 220 VAC, sehingga batas ukur yang harus digunakan adalah 250 atau 1000. Jika tidak diketahui nilai tegangan yang akan diukur, pilih batas ukur tertinggi.
Cara awal :
-Colokan probe merah pada terminal (+), dan probe hitam pada terminal (-) pada multimeter.
-Menentukan Batas Ukur pengukuran. Karena tegangan PLN secara teori adalah 220VAC maka kita arahkan selektor pada bagian VAC dengan Batas Ukur 250 atau 1000 (ingat Batas Ukur dipilih lebih besar dari pada tegangan yang akan diukur). Untuk pembahasan kita kali ini kita akan menggunakan Batas Ukur 250.
-Dalam pengukuran tegangan AC posisi penempatan probe bisa bolak-balik.
-Hubungkan kedua ujung probe (colokan) multimeter masing-masing pada dua kutub jalur tegangan PLN misalnya stop kontak.

-Perhatikan saat melakukan pengukuran, jangan sampai ujung probe merah dan hitam saling bersentuhan, karena akan menyebabkan korsleting.
-Dari pengukuran tersebut diperoleh penunjukan jarum sebagai berikut.

-menentukan pembacaan hasil ukur, rumus yang digunakan tidak berbeda saat kita menghitung hasil ukur tegangan DC.

BU = Batas Ukur
SM = Skala maksimum yang dipakai
JP = Jarum Penunjuk
VAC = Tegangan terukur
Pada pengukuran kita di atas Batas Ukur yang digunakan adalah 250 Vc dan Skala Maksimum yang digunakan 250, serta penunjukan jarum pada angka 200 lebih 4 kolom kecil yang mana masing kolom bernilai 5 sehingga bila kita jumlah menunjuk angka 220. dari data tersebut maka diketahui BU=250, SM=250 dan JP=220.
sehingga tinggal kita masukan ke rumus diatas sbb:
Vac = (250/250) 220
Vac = 220
Untuk penerapan pengukuran yang lain kita lakukan hal yang sama misalnya output trafo step down yang merupakan tegangan AC. Untuk mengukurnya tentukan batas ukur terlebih dahulu dengan mengacu pekiraan nilai yang tertera pada trafo tersebut. Kemudian sentuhkan ujung probe multimeter ke masing-masing terminal outpu trafo yang akan diukur. Tentu saja terminal trafo primer trafo harus terhubung tengangan PLN.
Cara mengukur tegangan :
Hubungkan hitam ujung (negatif -) ke 0V, normalnya terminal negatif batteray atau catu daya. merah ujung (positif +) titik dimana anda menginginkan mengukur tegangan.
Pembacaan skala analog :
Perhatikan penempatan sakelar jangkah ukur pilih skala yang sesuai. Untuk beberapa jangkah ukur anda perlu mengalikan atau membagi 10 atau 100 seperti ditunjukan pembacaan dibawah ini. Untuk jangkah ukur teganagn AC gunakan tanda merah sebab calibrasi skala sedikit geser.
Contoh pembacaan skala ditunjukan pada:
- Jangkah ukur DC 10V: 4.4V (baca langsung skala 0-10 )
- Jangkah ukur DC 50V: 22V (baca langsung skala 0-50 )
- Jangkah ukur DC 25mA : 11mA (baca 0-250 dan bagi dengan 10)
- Jangkah ukur AC 10V : 4.45V (gunakan skala merah, baca 0-10)
Rumus :

- VDC= Tegangan DC
- BU = Batas Ukur
- SM = Skala maksimum yang dipakai
- JP = Jarum Penunjuk

Cara menghitung :
Misalnya Batas Ukur yang digunakan 10 VDC dengan Skala Maksimum 10 VDC dan jarum diatas menunjuk pada angka 4 lebih 2 kolom kecil masing-masing kolom kecil bernilai 0,2 karena antara angka 4 dan 5(tidak tertulis), terbagi jadi (5 kolom kecil) Sehingga JP=4,4
- VDC = (BU/SM)JP
=(10/10)4,4
Banyak sekali istilah yang digunakan untuk menyebut alat ini, ada yang menyebut Avometer karena merujuk kegunaanya dari satuan yang digunakan Ampere, Volt dan Ohm. Multimeter dari kata Multi (banyak) dan Meter (dikonotasikan sebagai alat ukur). Multitester dari kata Multi (banyak) dan tester (alat untuk menguji).
Sebelum kita menggunakanya alangkah baiknya bila kita mengenal panel, terminal, dan fasilitas yang dimiliki alat ukur elktronika ini.

I. BATAS UKUR (BU) pada Multimeter seperti berikut ini.
Batas Ukur merupakan Nilai maksimal yang bisa diukur oleh multimeter

1. Paling kiri atas merupakan blok selektor DC Volt. Ini merupakan blok selektor yang harus kita pilih saat melakukan pengukuran tegangan DC. Perlu diingat Ini merupakan Batas Ukur (BU) yang harus kita perhatikan saat akan melakukan pengukuran. Bila diketahui perkiraan nilai tegangan yang akan diukur maka Batas Ukur yang harus dipilih harus berada diatas nilai perkiraan tersebut. Sebagai contoh bila kita akan mengukur tegangan pada suatu rangkaian yang memiliki nilai tertera pada PCB tersebut 9 volt DC maka kita boleh menggunakan batas ukur 10 volt DC.
2. Paling kiri atas merupakan blok selektor AC Volt. Ini merupakan blok selektor yang harus kita pilih saat melakukan pengukuran tegangan AC. Demikian juga untuk pengukuran teganganAC Batas Ukur yang harus dipilih harus berada diatas nilai perkiraan tersebut tegangan AC tersebut. Contoh Bila akan mengukur tegangan Jala-jala PLN seperti kita ketahui nilai tegangan PLN berkisar antara 220 Volt AC maka harus dipilih batas ukur 250 volt AC.
3. Bawah kanan tertulis satuan Ohm untuk mengukur resistansi, ini tidak terlalu kritik atau beresiko bila salah memilih selektor. Hanya akan berpengaruh pada ketelitian dan cara kita menghitung nilai resistansi terukur.
4. Kiri bawah tertulis DC mA yang digunakan untuk mengukur Arus DC. Arus yang terukur maksimal 250 milli Ampere DC. penggunaan batasn ukur harus diatas nilai arus perkiraan yang ada pada rangkaian.
5. Bila tidak diketahui perkiraan nilai tegangan gunakan batas ukur yang paling besar (bisa 1000 VoltDC atau 1000 VoltAC). Demikian juga untuk arus DC gunakan skala batas ukur tertinggi. Yang paling penting pada pengukuran arus dan tegangan DC polaritas colokan (probe) jangan terbalik. Kutup (-) terhubung colokan hitam dan (+) terhubung colokan merah.
6. Bila dalam pengukuran terjadi kesalahan batas ukur ataupun polaritas colokan terbalik sebaiknya cepat-cepat kita tarik colokan dari titik ukur yang kita lakukan. Hal ini pada multimeter analog beresiko terhadap rusaknya alat ukur kita meskipun dalam multimeter terdapat sekring pengaman.
II. SKALA MAKSIMUM
Skala Maksimum (SM) merupakan batas nilai tertinggi pada panel meter

1. Pada Skala Maksimum paling atas merupakan skala yang dibaca saat mengukur resistansi. Perlu diingat bahwa penunjukan jarum pada simpangan paling ujung kanan merupakan nilai resistansi paling kecil. Sedang pada simpangan paling kiri untuk atau jarum (bergerak sedikit) mengindikasikan nilai resistansi paling besar. Karena nilai skala resistansi (ohm) paling kiri memiliki angka paling besar, sedangkan paling kanan nilainya nol.
2. Pada gambar di bawah ini diperjelas untuk Skala Maksimum pengukuran arus, tegangan AC ataupun DC.

Pada gambar diatas ada tiga nilai yang umumnya dipakai pada multimeter analog yaitu skala maksimum 10, 50, dan 250.
III. MENGUKUR RESISTANSI
1. Letakan selektor atau batas ukur (BU) resistansi yang paling sesuai. Pilih batas ukur resistansi sehingga mendekati tengah skala. Sebagai contoh: dengan skala yang ditunjukkan dibawah dengan resistansi sekitar 50kohm pilih × 1kohm range.
2. Hubungkan kedua ujung probe (colokan) jadi satu. Bila jarum belum bisa menunjuk skala pada titik nol putar ohm ADJ sampai jarum menunjukan nol (ingat skala 0 bagian kanan!). jika tidak dapat diatur ke titik nol maka batteray didalam meter perlu diganti.

3. Cara menghitung nilai resistansi yang terukur :

R = BU x JP
 R = resistansi yang terukur (ohm)
 BU = Batas Ukur yang digunakan
 JP = Penunjukan Jarum pada skala
sehingga pada contoh diatas dapat kita hitung resistansi yang terukur memiliki nilai :
• BU = x 1K
• JP = menunjuk pada angka 50 ohm
terhitung :
• R = 1K x 50
• R = 50K ohm
a. Cara Menggunakan Multimeter Analog
- Untuk memulai setiap pengukuran, hendaknya jarum menunjukkan angka nol apabila kedua penjoloknya dihubungkan. Putarlah     penala mekanik apabila jarum belum tepat pada angka nol (0).
- Putarlah sakelar pemilih ke arah besaran yang akan diukur, misalnya ke arah DC mA apabila akan mengukur arus DC, ke arah AC V untuk mengukur tegangan AC, dan ke arah DC V untuk mengukur tegangan DC.
- Untuk mengukur tahanan (resistor), sakelar pemilih diarahkan ke sekala ohm dan nolkan dahulu dengan menggabungkan probe positif dan negatif. Apabila belum menunjukkan angka nol cocokkan dengan memutar ADJ Ohm.
- Sambungkan penjolok warna merah ke jolok positif dan penjolok warna hidam ke jolok negatif.
- Untuk pengukuran besaran DC, jangan sampai terbalik kutub positif dan negatifnya karena bisa menyebabkan alat ukurnya rusak.
b. Cara Menggunakan Multimeter Digital
Cara menggunakannya sama dengan multimeter analog, hanya lebih sederhana dan lebih cermat dalam penunjukan hasil ukurannya karena menggunakan display 4 digit sehingga mudah membaca dan memakainya.
- Putar sakelar pemilih pada posisi skala yang kita butuhkan setelah alat ukur siap dipakai.
- Hubungkan probenya ke komponen yang akan kita ukur setelah disambungkan dengan alat ukur.
- Catat angka yang tertera pada multimeter digital.
- Penyambungan probe tidak lagi menjadi prinsip sekalipun probenya terpasang terbalik karena display dapat memberitahu.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Merakit Radio

Mungkin anda tidak percaya , sebab selama ini radio yang dijual dalam bentuk jadi menggunakan listrik DC sebagai pendorong kerja komponen. Namun saya mengjak untuk mengotak-atik pembuatan rangkaian radio tanpa arus listrik/sumber tegangan yang nyeleneh ini.
Radio bekerja baik apabila tidak salah memasang komponen sesuai dengan penempatanya atau simbolnya. Oleh karena itu kita harus memperhatikan penempatan dan dan meneliti sebelum memulai langkah pada perakitan rangkaian yang sangat sederhana ini.
Keterangan:
::Lilitan= Spul antena menggunakan kawat nikelin / tembaga 0,25 mm dan koker 12,5 mm serta sebanyak 30                    gulungan dililitkan kebatang ferit.
:: Antena= Antena penerima sepanjang 10-20 meter
::dioda kristal= Kristal dioda A72
::Cap1= Kondensator keramik 50-100pf
::Cap2=Varco (kondensator variabel) 0-250 pf
::headphone=headphone dengan daya tahan 3000 ohm

Rangkaian di atas hanya berguna sebagai radio penerima saja. Bisa disebut radio kristal karena menggunakan radio kristal. Dioda ini akan memproses gelombang suara melalui antena. Kemudian dismpan dalam kondensator keramik/mika.

Bila tidak mengeluarkan bunyi , maka harus cari penyebab dicari penyebabnya, mungkin dari :

  • Pemasangan dioda kristal terbalik.
  • Penyolderan tidak lengket.
  • Lilitan pada spul antena terputus pada waktu menggulung.
  • Kondensator keramik/mika rusak.
  • Penyolderan headphone tersambung.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

RESISTOR VARIABEL

Konstruksi

Variable resistor terdiri dari sebuah lintasan/track resistansi yang terhubung di kedua ujungnya dan sebuah wiper yang bergerak sepanjang lintasan seperti kamu menggulung kumparan. Lintasan bisa terbuat dari carbon, cermet, (ceramic dan campuran metal) atau lilitan kawat (untuk resistansi rendah). Lintasan biasanya  berputar tetapi ada juga versi dengan lintasan lurus, biasanya disebut slider, juga  tersedia. 
Variabel resistor bisa digunakan sebagai rheostat dengan dua sambungan (wiper dan hanya satu ujung dari lintasan) atau sebagai potensiometer dengan tiga sambungan dalam pemakaiannya. Versi miniature disebut presets dibuat untuk pengaturan rangkaian yang tidak akan membutuhkan penyesuaian (adjustment) lebih lanjut.
Variabel resistor sering disbut potensiometer dalam banyak buku dan catalog. Mereka dispesifikasikan dengan resistansi maksimum mereka, lintasan logaritmik atau linear, dan ukuran fisik mereka. Diameter kumparan standar adalah 6 mm.
Nilai resistansi dan tipe dari lintasan ditulis pada bodi:
    4K7 LIN berarti  4.7 k lintasan linear.
    1M LOG berarti 1 M lintasan logarithmic.
Beberapa variable resistor dirancang untuk dipasang pada papan rangkaian, tetapi kebanyakan untuk  memasang melalui sebuah lubang yang dibor guna mengisi rangkaian dengan kawat yang dimasukkan yang menghubungkan terminal-terminal mereka pada papan rangkaian.
 Lintasan (track) Linear (LIN) dan Logarithmic (LOG)
Linear (LIN) track berarti bahwa nilai resistansi berubah di  nilai tetap sebagaimana kamu menggerakkan wiper. Ini adalah model standar dan kamu harus mengasumsikan tipe ini yang dibutuhkan jika sebuah proyek tidak menetapkan tipe lintasa/track. Presert selalu mempunyai lintasan linear.
Logarithmic (LOG) track berarti bahwa nilai resistansi berubah secara perlahan dia salah satu ujung lintasan dan berubah secara cepat  ke ujung yanglain, maka separuh jalan sepanjang  lintasan bukanlah bernilai setengah dari nilai reistansi total.  Model ini digunakan untuk  mengatur kontrol  suara (keras lembut)  karena telinga  manusia   memiliki respon logaritmik pada keras lembut suara maka kontol yang halus (perubahan perlahan) dibutuhkan di suara rendah dan  control lebih kasar (perubahan cepat) di suara tinggi. Adalah penting untuk menghubungkan ujung dari lintasan/track pada dengan cara memutar yang benar, jika kamu menemukan bahwa  memutar kumparan menambah bunyi/volume dengan cepat diikuti oleh perubahan lebih jauh/cepat kamu  harus menukar koneksi pada ujung track/lintasan yang lain.
Rheostat
Ini merupakan cara paling sederhana tentang menggunakan variable resistor. Memiliki tiga terminal tetapi hanya Dua terminal digunakan: Satu dihubungkan pada ujung lintasan, dan yang lain pada wiper yang dapat dipindahkan. Memutar kumparan merubah nilai resistansi antara dua terminal dari nol samapi nilai resistansi maksimum.
Rheostat sering digunakan untuk memvariasi arus (vary current), misalnya untuk mengendalikan lampu atau laju dimana capasitor diisi (pengisian capasitor).
Jika rheostat dipasang pada papan rangkaian cetak (pcb) kamu bisa menemukan bahwa ketiga terminalnya tersambung. Bagaimanapun, satu terminalnya terhubung pada terminal wiper (tidak terpakai). Ini hanya memperbaiki kekuatan mekanik dari pemasangan tetapi tidak ada fungsi elektrikalnya.
Potensiometer
Variable resistors digunakan potensiometer mempunyai tiga termninal semuanya terpakai.
Model ini pada umumnya diginakan untuk memvariasi tegangan (vary voltage), contoh untuk mengatur titik switching dari sebuah rangkaian dengan sensor, atau mengendalikan keras lembut bunyi (loudness) dalam rangkaian penguat. Jika terminal pada kedua ujung lintasaan/track terhubung  dengan  catu daya maka terminal wiper (tengah) akan menyediakan sebuah tegangan yang dapat divariasi dari nol sampai nilai maksimum catu daya.
Presets
Ini merupakan versi miniature dari variable resistor standar. Mereka dirancang untuk dipasang secara langsung pada papan rangkaian dan di atur hanya ketika rangkaian dibangun. Contoh untuk mengatur frekuensi dari nada alarm atau kepekaan rankaian peka cahaya. Obeng kecil atau alat sejenis  dibutuhkan untuk mengatur/menyetel presets.
Preset sangat lebih murah daripada variable resistor standar sehingga mereka kadang-kadang digunakan dalam proyek-proyek dimana variable resistor standard pada umumnya digunakan.
Multiturn presets digunakan dimana pangaturan dengan ketelitian tinggi harus dibuat.  Obeng harus diputar sebanyak 10 x untuk memindahkan slider dari ujung lintasa/track ke ujung yang lain, memberikan control ketelitian yang tinggi.

  Preset
(open style)
Presets
(closed style)
Multiturn preset

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Tipe Dasar Transistor

Transistor adalah alat semi konduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Transistor through-hole (dibandingkan dengan pita ukur sentimeter
Pada umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E) dan Kolektor (C). Tegangan yang di satu terminalnya misalnya Emitor dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada arus input Basis, yaitu pada keluaran tegangan dan arus output Kolektor.
Transistor merupakan komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil (stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.

Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semi konduktor misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolis (sebelum air berubah menjadi hidrogen dan oksigen, tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor isolator, karena pembawa muatanya tidak bebas.
silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat dilihat bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Cara kerja transistor

Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor bipolar juction (BJT atau transistor bipolar) dan field effect transisitor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

Jenis-jenis transistor

BJT symbol PNP.svg PNP JFET symbol P.png P-channel
BJT symbol NPN.svg NPN JFET symbol N.png N-channel
BJT
JFET
Simbol Transistor dari Berbagai Tipe
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET) ,IGBT, HBT, MISFET, VMOSFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekuensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua diode yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau h_{FE}. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

FET

FET dibagi menjadi dua keluarga: Junction FET JEFTdan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET MOSFET. Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah diode  dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah diode antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Sifat bahan listrik

  • 1. Bahan ListrikSifat Listrik Bahan
  • 2. Sifat Listrik BahanJenis Bahan / Material:1.Murni unsur - logam [Fe, Hg] - nonlogam [C (grafit, intan), Si, S]2.Senyawa - oksida / keramik [tanah liat, SiO2] - polimer [kayu, karet, plastik]3. Sifat bahan di atas : padat atau cair.4.Sifat bahan lainnya : cair atau gas.
  • 3. Sifat Listrik BahanJenis ikatan-kuat antar atom :1. Ikatan logam : elektron terluar dilepas oleh atom, lalu ‘dimiliki bersama’,berupa ‘gas’ elektron yang bergerak bebas, mengikat semua ion +.2. Ikatan kovalen : 1 elektron ’dimiliki bersama’ oleh 2 atom, elektron hanya bergerak di sekitar 2 atom itu, mengikat 2 atom itu.3. Ikatan ionik : 1 atau beberapa elektron pindah ke atom lain, terjadi ion + dan – yang lalu saling menarik.
  • 4. Sifat Listrik BahanSifat listrik bahan :1. Jika elektron bergerak bebas, mudah terjadi arus listrik;“konduktor”, penghantar listrik [logam].2. Ada pula konduktor ion positif/negatif [keramik].3. Jika elektron terikat pada atom, tidak mudah terjadi arus listrik; “isolator”, non-konduktor, insulator listrik [semua jenis bahan lainnya].4. Hanya jika diberi medan listrik cukup kuat, > “kekuatan dielektrik” bahan, isolator menjadi konduktor.
  • 5. Sifat Listrik BahanData tahanan-jenis beberapa bahan :Perak (Ag) 16 nΩmTembaga (Cu) 17 nΩmKuningan (Cu + ~30% Zn) 70 nΩmNichrom (Ni + Cr) 1µΩmGrafit (C; semikond.) 35µΩmSilikon (Si) 2 kΩmKaret (C-isolator) ~1 MΩmKaca (SiO2) ~1 TΩmTeflon (PTFE) ~100 TΩm
  • 6. Sifat Listrik BahanData kekuatan dielektrik beberapa bahan :Udara (N2, O2) 3 MV/mLilin (C, H) 10 MV/mKaca (SiO2) 14 MV/mKertas 16 MV/mPolistirena (styrofoam) 24 MV/mTeflon 60 MV/mJika tubuh manusia menjadi konduktor, dan dialiri > 1 mA, jantungnya dapat kacau denyutnya, di samping terjadi konversi energi listrik menjadi energi termal.
  • 7. Sifat Listrik BahanIsolator dapat menjadi semikonduktor :1. Jika atom agak mudah melepas elektron (misalnya oleh naiknya suhu), atau hadir atom asing yang agak mudah dapat menangkap elektron.2. Bahan itu lalu disebut “semikonduktor” yang ‘intrinsik’, atau ekstrinsik n (jika ada pelepasan elektron), ekstrinsik p (jika ada penangkapan elektron, dan pergeseran elektron lain mengesankan ada muatan positif, ‘lubang’ bergerak)
  • 8. Sifat Listrik BahanIsolator listrik :1. Atomnya dapat terpolarisasi oleh medan listrik dari luar; “terjadi muatan (ter)induksi”; disebut “bahan dielektrik”.2. Atom-atomnya dapat membentuk gugus terpolarisasi permanen : - jika orientasi dipol listriknya acak, bahannya “para-elektrik”; dapat agak diorientasikan oleh medan listrik luar. - jika orientasi dipol listrik antar-tetangga saling menyejajarkan, bahannya “fero-elektrik”; orientasinya amat mengurangi pengaruh medan listrik luar dalam bahan.
  • 9. Sifat Listrik BahanKonstanta dielektrik/permitivitas relatif beberapa bahan isolatorVakum 1Udara 1,00054Lilin, teflon ~2Polistirena 2,5Kertas 3,7Kaca biasa ~4Kaca pireks 4–6
  • 10. Sifat Listrik BahanSifat bahan fero-elektrik1. Bersifat juga “piezo-elektrik” : - jika diberi medan listrik, terorientasi sambil mengkerut / mengembang (“elektro-striksi”, “electrostriction”); - jika ditekan, terjadi beda potensial listrik padanya.2. Manfaat : untuk mikrofon, sonar, pengukur regangan & tekanan darah, akselerometer, peng-emulsi & peng-homogen susu & cat.3. Jika dipanaskan ke atas “suhu Curie”nya, menjadi para-elektrik.
  • 11. Sifat Listrik BahanTugas Kelompok
  • 12. Tugas Kelompok1.Buatlah Kelompok yang terdiri dari maks.3 orang2.Setiap kelompok mengumpulkan informasi tentang salah satu produk : - konduktor (TR, TM, TT, telekomunikasi) - isolator (TR, TM, TT, padat, cair atau gas) - semikonduktor (dioda, transistor, thyristor)(pembagian kelompok ditentukan oleh ketua kelas, misal ada 20 kelompok, maka konduktor 7 kelompok, isolator 7 kelompok dan semikonduktor 6 kelompok)
  • 13. Tugas Kelompok3.Jenis produk yang dipilih kemudian ditulis dalam makalah 3-4 lembar, berisi : - komposisi materialnya (unsur penyusun, konstruksi fisik) - prinsip kerja (jika ada) - sifat listriknya (tegangan, arus, isolasi, dsb) - penggunaannya (dimana digunakan, kelebihan, kekurangan) - informasi lain yang dirasa perlu
  • 14. Tugas Kelompok4.Dikumpulkan minggu depan5.Tugas yang dikumpulkan akan dilakukan tanya jawab di kelas (sebagai nilai quiz 1)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Sejarah Transistor

Kebanyakan ahli sejarah mengira bahwa dunia elektronika dimulai ketika Thomas Alpha Edison menemukan bahwa filamen panas memancarkan elektron (1883). Untuk merealisasi nilai komersial dari penemuan Edision, Fleming mengembangkan dioda hampa (1904). Deforest menambahkan elektroda ketiga untuk mendapatkan trioda hampa (1906). Sampai 1950, tabung hampa mendominasi elektronik; mereka digunakan dalam penyearah, penguat, osilator, modulator, dan lain-lainnya.
Ada beberapa alasan yang menyebabkan berkurangnya penggunaan tabung hampa dimasa sekarang ini. Hal ini dapat dilihat dari perbedaannya yang sangat mencolok jika dibandingkan dengan transistor begitu pula dengan kelebihan dan kekurangannya.
Perbedaan tabung hampa dengan transistor adalah sebagai berikut:
1. Pada tabung hampa:
  • Tabung hampa mempunyai fisik besar dan kurang praktis.
  • Tabung hampa mempunyai tiga kaki yang terdiri dari Anoda, Katoda, dan Kasa kemudi.
  • Tabung hampa banyak terbuat dari kaca sehingga rangkaian di dalamnya tampak dengan nyata.
  • Tabung hampa tidak tahan terhadap goncangan.
  • Memerlukan Tegangan atau energi yang cukup besar.
2. Pada transistor:
  • Bentuk fisik  kecil dan praktis.
  • Transistor mempunyai tiga kaki yan terdirti dari: Basis, Kolektor, dan Emitor.
  • Rangkaian dalam transistor tak kelihatan dari luar karena terbungkus plat atau mika.
  • Transistor than terhadap goncangan.
  • Transistor hanya membutuhkan tegangan atau energi listrik yang minimum, hanya kira-kira beberapa volt saja.
Sejak ditemukannya transistor maka terjadilah revolusi di dalam dunia elektronika, karena transistor memiliki keuntungan yang lebih dibanding tabung hampa. Namun pada dasarnya, antara tabung hampa dengan transistor hampir sama dengan tabung elektroda atau tabung elektron. Persamaan ialah pada kakinya sebagai berikut:
Katoda = Emitor
Anoda = Kolektor
Kasa kemudi = Basis

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Bahan Semikonduktor

Bahan semi konduktor digunkan untuk membuat komponen aktif elektronika:
1.       Dioda
2.       SCR
3.       Transistor
4.       BJT
5.       UJT
6.       FET
Semi konduktor yang di pilih yaitu:
a.       Silikon (Si)
b.      Germanium ( Ge)
Si  dan Ge termasuk bahan semi konduktor murni (intrinsik).
Sebenarnya bahan semi konduktor itu banyak sekali jenisnya, akan tetapi tidak semua bisa di pakai begitu saja karena melihat dari stok bahan yang ada di bumi dan juga cara memperolehnya .
Sifat dari Ge dan Si menurut ahli atom Bohrn sebagi berikut:
Gambar di atas di peoleh dari mencari electron valensi dengan rumus 2x(n)2 dimana n adalah jumlah kulit :
Ge+32
K = 2 x (1)2 = 2
L = 2 x (2)2 = 8
M = 2 x (3)2 = 18
Valensi = 4 ( Sisa) atau atom terluar
Si+14
K = 2 x (1)2 = 2
L = 2 x (2)2 = 8
Valensi = 4 ( Sisa) atau atom terluar
Dapat di tarik kesimpulan mengapa atom Ge dan Si di pilih sebagai bahan semi konduktor karena mempunya Elektron Valensi yang sama yaitu 4:4.Struktur membuat komponen komponen aktif elektronika;
Cara membuat bahan semi konduktor menjadi tipe P dan N adalah sebagai berikut:
1.misalkan kita ambil Ge yang punya valensi 4 terus kita ambil atom yang punya elektron valensi 3 sehingga 4+3= menjadi bahan type P karena si pencampur kurang elektron 1.

2.misalkan kita ambil Ge yang punya valensi 4 terus kita ambil atom yang punya elektron valensi 5 sehingga 4+5= menjadi bahan type N karena si pencampur kelebihan elektron 1.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS